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Page 3, paragraph i Of section "Steady Axially Symmetric Flow" line 4:
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•For compression_
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(2ia)

Page 4, right column, line 7: Equation (12) should be equation (13).

Page ii: Equation (53a) should read:

NACA-Langley - 12-15-50 - 1600
tan 6 = -Kr
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APPLICATION OF RADIAL-EQUILIBRIUM CONDITION TO AXIAL-FLOW COMPRESSOR AND
TURBINE DESIGN

By C_UNG-HU& Wu and LINCOLN WOLFENSTEI_

SUMMARY

Basic general equations governing the three-dimensional com-

pressible flow o.f gas through a compressor or turbine are given

in terms o.f total enthalpy, entropy, and velocity components of

the gas. Two methods o.f solution are obtained.for the simplified,

steady axially symmetric flow; one involves the use o.f a number

oj successive planes normal to the axis of the machine and short

distances apart, and the other involves only three stations for

a stage in which an appropriate radial-flow path is used.

Methods o.f calculation.for the limiting cases of zero and infinite

blade aspect ratios and an approximate method qf calculation

for finite blade aspect ratio are also given. In these methods,

the blade loading and the shape o.f the annular passage wall may

be arbitrarily specified.

The analysis shows that the radial motion of gas consists o.f

a gradual, generally monotone component due to the taper in the

passage wall, and an oscillatory component due to the radial

variation of the specific mass flow at different stations along

the axis o.f the machine specified in the design. The streamline

is curved by this radial flow and a corresponding radial pressure

gradient is required to maintain this curvature. The magnitude

of this gradient is increased with high Mach number of gas

flow and high aspect ratio of blade row. The conventional

method of calculation, in which the e_ect of radial motion on

the radial distribution of gas state is neglected, is found to be

applicable only .for the limiting case o.f zero aspect ratio.

An analysis of the equations governing the flow shows that a

designer is.free to prescribe a reasonable radial variation o.f one

of the velocity components or other thermodynamic properties

oj the gas at any station within the blade region. The various

ways of using this degree of.freedom and the different types o.f

design obtained are discussed. Numerical computations are

then made .for two types o.f compressor and one type o.f turbine.

The results indicate that, even in the case o.f nontapered passage

walls, appreciable radial motion occurs and the corresponding

effects are o.f significant magnitude and should be considered

in design.

INTRODUCTION

The design of a compressor or a turbine (either of which
is referred to hereinafter as "a turbomachine") may be

divided into two phases. The first phase concerns the type

of design to be used, or the determination of the most desir-

able possible variations of velocity and thermodynamic prop-

erties of the gas in planes normal to the axis of the machine

between successive blade rows. The second phase concerns

the design of blades that will give the desired variations of

velocity and other properties of gas in these planes. In the

first phase, the condition of radial equilibirum (that is, the

radial component of the equation of motion) must be used.

The flow of gas in a turbomachine is curvilinear; it is curved

not only by the whirling motion of gas, but also by the

radial motion of the gas (reference 1). The equation of

motion then specifies the radial pressure gradient required

to provide the centripetal force to maintain the curved flow.

_z
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(b)
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(a) Stream surface over four stages of multistage turbomachine.

(b) Intersection of stream_surface with plane normal to axis.

(e) Intersection of stream surface with axial plane.

FIGUR]_ 1.--Stream surface over four similar stages of:multistage turbomachine and inter-

section of stream surface with planes normal to and containing axis of machine.

In figure 1 (a), a curved stream surface over four similar

stages of a multistage turbomachine is shown and figures l(b)

and 1(c) show the intersections of this stream surface with

planes nol_nal to and containing the axis of the machine,

respectively. The radial pressure gradient due to the

1
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whirling motion of gas is always positive; whereas that due

to the radial motion of gas may be either positive or negative,

depending on whether the curvature caused by the motion

is inward or outward from the axis of the machine at the

point of consideration. Even when the radial motion

involved is small, if the gas velocity is high and the blade

aspect ratio is large, the radial pressure gradient due to

the radial motion is of signifcant magnitude compared with

that due to the whirling motion of gas and should be included

in the design calculation.

In the calculation of the state of gas in the normal planes

far upstream and downstream of a single row of blades,

where the radial motion is small, the pressure gradient is

essentially due to the whirling motion alone. Experimental

measurement checked well with the calculation when only

the whirling motion was considered (references 1 to 3).

For the general case of the gas in the normal planes between

closely spaced successive blade rows, however, no satisfactory

theory exists to calculate the magnitude of the radial dis-

placement of the streamlines and its effect on the radial

distribution of the state of the gas. A preliminary theoretical

investigation of this problem conducted at the NACA
Lewis laboratory was completed in April 1948 and is

presented herein.

In the analysis, the general equations governing the three-

dimensional flow of gas in turbomachines are expressed

in terms of total enthalpy, entropy, and velocity components

of the gas. They are developed primarily for the case

of steady axially symmetric flow corresponding to the limiting

case of an infinite number of blades. Two numerical

methods of solution are presented; one uses a number of

successive stations through the turbomachine, the other

uses only three stations for a stage in which an appropriate

radial-flow path is employed.

Methods oi_s()l'ution for the limiting cases of very small

and very large blade aspect ratio-are then discussed. An

approximate_ of the radial dis'plaeer0ent across a

blade row having a finite aspecl;xatio is given for the general

case in which the whirling velocity "of ga_,fi,s prescribed in

design.

The basic equations obtained are also used to investigate

the maximum compatible number of radial variations of

the velocity components and other thermodynamic prop-

erties of gas that a designer is free to specify. It is found

that the designer can specify only one such variation at each

station along the axis of the machine within the blade

region. Various ways of specifying this variation and

the different types of design obtained are discussed.

The methods developed are applied to two types of

compressor and one type of turbine, in order to investigate

the magnitude _)f the radial motion and its effect on design
calculations.

FORMULATION OF EQUATIONS

GENERAL BASIC EQUATIONS

The ttu'ee-dimensional compressible flow of gas through

a turbomachine is governed by the following set of general

basic equations (references 4 to 6):

From the principle of conservation of matter, the equation

of continuity is

"_P+v (pV)=0 (1)
.

(Symbols used in this report are defined in appendix A.)

The principle of conservation of momentum is expressed

by the Navier-Stokes equation as

D_ - o-- u (
p -_ =pF--Vp+uV'V+-_ V .V- _) +2[(Vtt). V] _+

- 2
(7u) X (VX ?) --_ (V. V) (V_) (2)

where F is the external force exerted on unit mass of gas.

The principle of conservation of energy may be written as

Dt _-p

where u is related to T by

Du DT
D[ = c_.Dt (4)

when conduction only is considered, Q is given by

Q= o-'v. (kV_T) (5)

and • is the dissipation function given by

2 (V._)2 } (6){2V.[(V.V)V]+ (V X V)2-- 2 (V'V) (V.V)

For the range of gas temperature and pressure usually en-

countered in turbomachines, p, p, and T are accurately

relate d by the following equation of state:

p=RoT (7)

Theoretically, the preceding seven equations, together

with the given body force, known variations of e,, u, and k

with temperature, and suitable boundary and initial condi-

tions, completely determine the flow of gas through the

turbomachine. It is found convenient in the present in-

vestigation, however, to base the calculation on total

enthalpy and entropy, which are defined by

H=h+½ V 2 (8)

where

h---u+pp -1 (9)

and

T ds=du +p d(p-') (10)
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By use of equations (8) to (10), tile following forms of con-

tinuity, motion, and energy equations are obtained (ap-

pendix B) :

_ DtlOg_ T--_

(v×v)-_ (v,V)(vu) } (2a)

DH _, 1 bp -- -_, u z_ 1
_i =Q÷_+_ bTq- V.(,_ ÷p-[v V q-_ v(v.CT)]-+

- 2
l{2[(v#)-v]_q-(v_,)X(VXV)--_-(v-'v)(v#)}) (3a)

De O _o (3b)_=_+R7

Equation (la) gives the continuity relation in terms of

velocity, temperature, and entropy of gas. Equation (2a)

relates the gradient of total enthalpy with body force,

viscous forces, velocity, and other properties of the gas.

This vector equation gives three scalar equations in three

dimensions. Equation (3a) gives the rate of change of total

enthalpy of gas along a streamline in terms of rate of heat

additions, rate of work done by body and viscous forces,

and so forth. Equation (3b) gives the rate of change
of entropy along a streamline in terms of rate of heat con-

duction and of dissipation of energy due to viscosity.

STEADY AXIALLY SYMMETRIC FLOW

The solution of the preceding general equations with a

given set of suitable boundary and initial conditions is

extremely difficult. Useful results may be obtained by

considering, as first done by Lorenz in steam-turbine theory

(references 7 and 8), the limiting case of an infinite number of

infinitesimally thin blades. In this simplification, the force

exerted on the gas by a blade element at any radius is con-

sidered to be uniformly distributed over the stream sheet be-

tween two neighboring blades at that radius, and is considered

the body force_F in the previous equations. For incompressible

and frictionless flow, the value thus obtained gives an average

value in the circumferential direction, provided the departure

from the average value is small (reference 1). Bee_mse the

number of blades is usually large, this simplification is con-

;idered to be reasonable and is also used in the present in-

vestigation. For steady inlet and exit eonditions, all

partial derivatives with respect to angular eoordiimte 0

and time t are then equal to zero and the <+ate of gas is a func-

tion of r and z only.

The ideal case of a nonviscous gas will be considered fn'st.

In this case, there exist two more relations defining the
problem° One is the fact that blade force is normal to the

surface of the blade and, consequently, to the relative

velocity of gas or the relative stream surface; that is,

F.(V--U)=O (11)

or, referring "to absolute cylindrical coordinates r, 0, z and

the relative angular coordinate x,

F_dr q-rFodxq- F_ dz=O (lla)

The other is the condition of integrability::of the. blade

surface, ., .

K. (v×_ =0: (12)

which in the case of axial symmetry reduces to (references 8

and 9)

From the general equations (la), (2a), (3a), and (3b), and

equations (11) and (12a), the following equations are

obtained for steady axially symmetric flow of nonviseous

gas : (See appendix B.)

1 b(rVr) bV_ 1
log T+v= log 

b
[_5 _, az \R/J--

5r _-_ 7 Or t-V_\ Or bz J (14)

0=r0- Fv, +.  ( y0)qk-_ "_ az d (1.5)

bH - bs Vo b(rVe) /bV_ bV,_

br \rF# bz \rFo]

In the preeeding equations, equation (1;]) is the continui W

equation; equations (14), (15), and (16) are the three equa-

tions of nmtion in the radial, circumferential, and axial

directions, respectively. Equation (17) is considered to

represent the energy equation and equation (18) to represent

equation (11). In these equations, Q is now the heat trans-

fer from the blade to the gas, uniformly distributed in the

circumferential direction, as is the blade force _. These

seven equations are considered seven independent equations

that relate the eight unknown variables, which consist of

three blade-force components, three velocity components,

and H and s of the gas. The first tlu'ee quantities determine
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the shape of the blade and the last five quantities completely

determine the state of the gas (all other thermodynamic

properties of gas, such as p, p, and T, can be computed

from them by using equations (7) to (10)).

For compressors and turbines without blade cooling, the

heat transfer between blade and gas is negligible; the en-

tropy of gas is then constant along any streamline according

t_ the energy equation (17). If the inlet air has a uniform

value of entropy, the radial and axial derivatives of entropy

in the preceding equations equal zero.

In the case of real gas, the axially symmetric simplified

forms of the viscous terms in equations (la), (2a), (3a), and
(3b) can be obtained in a similar manner. These terms in

the equations of motion may be neglected when compared

with other terms in the same equation if the boundary layers

along the passage walls are relatively thin. Because of the

viscous shearing stresses in the gas adjacent to the blade,

the force exerted by tile blade on the gas is now slightly

inclined from the direction normal to the relative velocity

of gas and, consequently, equations (11) and (12) are not

strictly true (the force components in the equations should

be replaced by the direction cosines of the normal to the

blade surface). Without using equation (11), however,

equation (18) can be obtained from the equation of motion

and the energy equation for steady flow with the assumption

that the heat generate d from the frictional work remains in

each stream sheet (appendix B) and can therefore be con-

sidered as representing the energy relation in the set of

equations. The entropy increase along the streamline is then

computed from a consideration of the actual compression or

expansion process

p :Kp" (19)

rmnla (appendix B)

In equation (2 , s_ _ a given machine,

d_ obtain_d_t_J_[_i_ure and tem-

p. nI anew design_btained from

t'_ efficiency used in d-T_gn calculations

for uncooled blades:

For compression,

1
_= -- or n=

-- 1 17--1
7

(21a)

For expansion,

_%--1 •

n 1 (21b)
7----7_ 1 or n-- 7± 1

1--7--

Because the change in s is usually small compared with the

changes in H and V, the preceding method of determining s

COMMITTEE FOR AERONAUTICS

may be adequate to account for the viscous effect in calcu-

lating the pressure and density change along the streamline

for the present problem. This correction is more important

in the case of multistage compressors. For a viscous fluid,

equation (20) therefore replaces equation (17) in the previous

set of equations; and equations (14), (15), (16), (18), and

(12a) are considered approximately trtIe. With equation (12),

there are still seven independent equations defining the

flow and the shape of the blade.

METHODS OF SOLUTION

The preceding section presents seven independent equa-

tions relating the eight dependent variables VT, Ve, Vz, H, s,

FT, F0, and F_, which define the flow of gas and the blade

shape in the blade region. In the direct problem with a given

machine, the shape of the blade section provides one more

relation between Fe and Fz, giving eight relations to deter-

mine the variation of the eight quantities throughout the

blade region. In the inverse problem, an appropriate desira-

ble variation of any one quantity is prescribed within the

blade region; the preceding seven equations then determine

the variation of the remaining seven quantities throughout

the blade region. No general solution of these equations •

seems possible, however, in either problem. Two numerical

methods of solution are therefore suggested. In the first

method, the preceding equations are applied to successive

planes normal to the axis of the machine and short distances

apart; this method is applicable to both direct and inverse

problems. In the second method, a particular case is con-

sidered, in which a simple appropriate radial-flow path is

prescribed in the design. This method may also be used as

a simple approximate solution in a direct problem in which

the radial-flow path is approximately known.

METHOD OF FINITE DIFFERENCE FOR SUCCESSIVE AXIAL STATIONS

When two successive stations j and k a short distance apart
within the blade are considered (fig. 2) and rVe is denoted

by _', equations (14) to (16) may be written for each station

as

O=Fo-_ / _+ (15a)

bH _ , _bs_i" 5t V ' [bV_ 5V_,'_ (16a)
_ --/%fi-i _fl-_ _ k. ar az/

The change in total enthalpy and entropy between the two

stations is obtained from equations (18) and (20)(appendix B):

Hk(rk)--Hj(ri)-_w[_k(rk)--_j(rj)]+ ftlk Q dt (18a)

s_(rk) --sj(rj) =R

Y_ 2

n--_, H, 2 (20a)
(n-- 1) (7-- 1) log_ V7

H_ 2
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j k

FIGURE 2.--Stations j and k short distance apart.

where (r) indicates that the gas properties at a particular

station are a function of the radial position of the gas

particle in that station. (It should be noted that because of

radial motion, the radial position of a gas particle at any
station k is different from its radial position at the previous

station j.)

Instead of integrating equation (13), the continuity

relation between the two stations is readily obtained by

equating the mass flow at the two stations:

Gkr_ drk= GF_ drs (22)

By expressing G in terms of H, V, and s, equation (22)

becomes (appendix B)

1 8k 1 sl

- (.k _ k--_-) e r_ dr_=V,.j H_-- e r_ drj

(22a)

Equations (12a), (14a), (15a), (16a), (18a), (20a), and
(22a) are now seven independent equations relating the gas

properties and the blade forces at the two stations in the

blade region. In these equations, the heat transfer is

negligible in an ordinary turbomachine and can be estimated

in the case of cooled turbine blades; the temperature T is a

known function of H, V, and s; n-is given; and rk is obtained

from rj and Vr._. Hence, there are only eight unknowns in H,

s, Vr, Ve, V_, F,, F0, and Fz at the second station k. In the

direct problem, the blade shape gives one more relation

between Fe and Fz; whereas in the inverse problem, one

suitable relation among the eight unknowns is specified by

the designer. In either case, the Unknowns at station/c can

be obtained from the known values at station j, the passage-

wall shape, and the preceding relations.

In the free space between two blade rows, or in the space

upstream of the first blade row and downstream of the last

blade row, the force terms drop out of the equations, which

results in equation (22a) and the following equations

(neglecting friction and heat transfer between gas and

passage wall) :

r 5H TbSm___b_V [_5V_ i_V,'_ (14b)
-_ = _r -- r2 _ - _ \- _ _z ]

Tr 5_'.Tr b_" Di- (15b)= _-r _z_=D_

_)H= T 5s-a_ hi" V //bV_ bVr'_
i_z bz--r" _-- _\-_ _ ] (16b)

Ds (20b)
D-_----0

Equation (22a) and these four independent equations,

together with the given passage-wall shape, completely

determine the variations of the five independent quantities

V_, Ve, V_, H, and s outside the blade region. The solution

of the problem over the entire region inside and outside the

blade region, using this step-by-step method, varies with the

type of design and the condition given or prescribed. In

any case, the computation would be quite laboriqus_

In order to obtain an over-all pictur_f tlUtxadial flow in a
. . ._&_v_ -. o, . .

turbomachine and its effect orff_emgn cor_s_eratlon m a

simpler way, the following method consi_tering tlSe problem

of a particular case is given: -_

METHOD OF PRESCRIBED RADIAL-FLOW PATH

In a turbomachine, the radial motion of the gas is caused

by three factors:

(1) Tapering of the annular passage either at the inner or

outer wall gives the flow a radial displacement across the

stage, which is, of course, greatest in the immediate neighbor-

hood of the tapered surface.

(2) Even with a nontapered passage, a radial displacement

across the stage may be necessary because of a variation

in the distribution of specific mass flow over the blade height

across the stage.

(3) Even if no radial displacement occurs across the stage

(that is, the same particle occupies the same radial position

at the first station of each successive stage), there will, in

general, be radial displacement of flow within the stage.

This radial flow will then be oscillatory in nature, a radial

displacement in the rotor being followed by an equal and
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opposite radial displacement in the stator. This radial flow

arises because of the difference between the radial variation

of the specific mass flow within the stage and that at the

entrance and exit stations of the stage. (This radial displace-

ment can only be avoided by specifying zero or the same radial

variation of specific mass flow at all stations of the stage

in the design.)

In general, the radial flow of gas therefore consists of a

gradual, generally monotone, radial motion due to factors (1)

and (2), with an oscillatory motion of period equal to the

stage length due to factor (3) superimposed on it. The

radial flow caused by these three factors will be similar to

that shown in figure 1. The effect of the radial motion

on the calculations arises chiefly through the term bV,/_z in

the radial-equilibrium equation (14a). This term is expected

to be significant mainly because of the oscillatory motion,

which may require significant changes in Vr within a single

row of blades. The case of oscillatory motion within a stage

with no over-all radial displacement across the stage will

therefore be considered first. That is, the gas-passage wall

is nontapered and the radial distribution of gas properties

at the entrance and exit stations of the stage is the same.

Because there is no blade force acting on the gas, the gas

flowing through the gap between two blades is under a

nearly constant pressure gradient and consequently tends

to move with the same curvature it acquires while leaying

the first blade. For nontapered passages, the maximum or

minimum point of the radial-flow path is likely to be some-

where near the middle of the gap. (The intersecting curve

of a stream surface with an axial plane is herein referred

to as "the radial-flow path." Because of axial symmetry,

the radial-flow path is the same in any axial plane.) The

statibns between blade rows are most conveniently chosen

at these points. The stations in front of the rotor, between

the rotor and the stator, and behind the stator are denoted

by subscripts 1, 2, and 3, respectively. (See fig. 3(a).) If

ro and Z represent the mean radial distance of the flow path

and the axial length of the blade row, respectively, then the

radial distance of the gas particle at position z is given by

r2--rl z

r--ro: _ f(_) (23)

and at stations 1, 2, and 3, z/L=-O, 1, 2

}
.f' (0) =f' (1) =J' (2)

(24)

_t, :re f is a function giving the form of the radial-flow path

and the prime indicates differentiation with respect to z/Z.

It follows that

dr r2--r, vj,(_)V,=V_ _=--ffE- (25)

(a)
o L

I

2L

3

*S "o

D

'l. '_ Ilm]

(b)
0 -/., ZJ5

(a) Nontapered passage.

(b) Tapered passage.

FIGURE 3.--Stations between blade rows.

At station 1, z----O,

V,.I=0
and

-(! V
"fl-- 2L2 z,lJ _ /

(26)

bZ

inasmuch as bV_/bz is practically zero in passing through

the gap. Similarly, at station 2, z=Z,

V,,2=0

and

2:-2_- _,2j (1) (27)

Because f" (z/L) determines "bV_/bz or the effect of radial

motion on the radial-equilibrium condition, it is desirable

that it vary continuously; this condition together with

those of equations (24) suggests

+( )=cos
Then

.f" (o) =-_-_,/" (1) =_



APPLICATION OF RADIAL-EQUILIBRIUM CONDITION TO AXIAL-FLOW" COMPRESSOR AND TURBINE DESIGN

and equations (23) and (25) to (27) become, respectively,

r--ro=--_cos lr(_) (23a)

V,----Tr _! V_ sin_ (_) (25a)

r2--r,
5z ]_ _ Vz.1 (26a)

bz ]2 --2_- V_.2 (27a)

For the sinusoidal form of J(z/L), the maximum absolute

value of f"(z/L) occurs at z----0, L, and 2L, and is equal

to v2. Even if J"(z/L) is assumed constant between z----0

and z=L/2, thus minimizing the maximum absolute value of

if' in the interval, the absolute value off" equals 8. This

assumption, however, necessitates a discontinuity in if' at

z----L/2. The values of _ for the absolute values off"(0)

and if'O) can therefore 5e considered as small as is likely.

The smooth variation of ff'(z/L) and the minimization of

the absolute value offf'(z/L) at the stations make it desir-

able to employ equation (23a) in the design. This simple

radial-flow path will also give a good approximate answer

to most designs in which the distribution of blade loading

and radial blade forc_ is not too ununiform in the axial

direction. In such cases, this simple sinusoidal curve is

believed to represent the major harmonic of the actual radial-

flow path and the principal effect of the radial motion may

be obtained through the use of this simple curve.

The radial-equilibrium equation (14b) may be written in

terms of (r2--rl) by use of equations (26a) and (27a)

_=z,_-_T_..v,,,_-r-(--l)_ _ V_., 2 (14c)

where

i=1, 2, 3

When r_ is replaced by the dimensionless variable

r,'=( r, ), equation (14e) becomes
\r t-- pal

V dG _+, _r2
_.,_ (--ly _ (r2'--r/) A2V_., 2 (14d)

This form of the radial-equilibrium equation is seen to con-

tain a term directly proportional to the radial displacement,

to the square of the axial velocity, and to the square of the

blade-row aspect ratio. If the blade-row aspect ratio is

large or the axial velocity is high, the effect of radial motion

may be large even though only a small amount of radial dis-

placement occurs across the blade row.

This method is readily extended to the case where an over-

all radial displacement occurs across the stage due to tapering

of the passage or due to variation in the design from stage

to stage. In figure 3(b), the radial position of a gas particle

originally at rl in station 1 is at rs in station 3. For the

oscillatory motion required within the stage, r2 is not ge_er-
1

ally equal to _ (rl+rs). For the same reason stated in the

previous case, it is desirable to have the radial-flow path

consisting of a sinusoidal curve superimposed on the line

passing through (z_, rl) and (zs, rs); that is ....

• _rs--rl z_ 1 (23b)r=r__(r2--_)(l_eos_-_)

Then

V rrs--rl_lr / rl+ra_sin_ ] (25b)=L t z G
and

,(_z_) = (_1), lr2[ rl+rz'__ r2--_) V_., (26b)

inasmuch as OVdbz is practically zero in passing through

the gap. With this value of 5V,/Sz, the radial-equilibrium

equation (14b) becomes

dH_ _ ds,T_d_V dV_._(__l_ _ 7r2 / rl-_-r_

(14e)

This equation is similar to equation (14c). (If ra=r_, it

reduces to equation (14c).) A similar equation in dimen-

sionless r/ can also be obtained for this case by dividing r_

by (r_--r_)_.

With this method of prescribed radial-flow path, if it is

only required to find the velocity distribution in stations
between successive blade rows (to provide data for the design

or setting of blades), the distribution can be obtained by

considering only these planes without making any computa-

tion in the blade regions. For example, suppose that all quan-

tities are known at the inlet station of the stage (station 1),

then for station 2 behind the rotor blade row the follow-

ing relations exist: When the untapered passage walls are

considered, equations (14c), (18a), (20b), and (22a) give

dH_ _ ds_ _ _ d_ + V _ 2 dV_ 2q_TrOr_--rl, ( 4f)

f/'H,(r_)=H_(ri)+o_[rdr2)--r,(r,)]+ , Q dt 08b)

H_-- 1 G_
_,--3'

s2(r_)_sl(r_)+R (n--l) (_,--1) log_- 1 2 (20e)
H_-_G

and
1 s_ 1

H. 1 e 1 V_ 2 ,-_e-_r_ drt( )
(22b)

873599--50--2
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If the radial variation of one quantity is known (such as
5_'2/br2=0, _)V,.2/br2----0, or b_2/br2=0) among the five un-

knowns at station 2 (consisting of i'2, V,.2,//2, s:, and r2(rO),

all the other quantities can be determined. The procedure

will vary with different types of design. In most cases, the

computation may be started with an appropriate value of r_

as a function of r, obtained by an approximate solution.

With the Variation of one of the four quantities//2, s2, _'2, and
Vz.2 given, the remaining three quantities are computed from

equations (14f), (18b), and (20c). •These values are then

inserted in equation (22b) to determine if the continuity

relation is satisfied. If it is not, the values must be adjusted

until the continuity relation is satisfied. An alternative pro-

cedure is to insert these values in equation (C5), which is

derived from equation (22b), to obtain new values of r2 as

a function of rl, and the entire process is repeated until the

desired accuracy is reached. In a tapered passage, both

stations 2 and 3 must be computed at the same time. An

application of this method to a nonvortex-type compressor

stage will be given in the section NUMERICAL EXAMPLES

FOR TYPICAL DESIGNS.

LIMITING CASES AND APPROXIMATE SOLUTIONS

Simplified-radial-equilibrium approximation.--In this

commonly used approximation, the gas is assumed to flow

on cylindrical surfaces for nontapered passage walls; that is,

v,=o } (2s)
rl-_-r2-._ra

At these stations, the radial-equilibrium equation (14b)

reduces to

dH, _ ds,.a - _, d_,+ Vz, dVz,
=1', dr_r, 2 -_ " dr," (14g)

where i----1, 2, or 3.

For tapered passage walls, a certain simple relation among

rl, r_, and ra is assumed, but the term containing bVr/bz in

the radial-equilibrium equation is still neglected (that is,

equation (14g) is used instead of equation (14b)).

With this simplifying assumption, the gas state at station

2 or 3 can be computed much more easily from the gas state

at station 1 and the one condition specified at stations 2

and 3. The continuity equation (22b) for individual stream

sheets, however, is now discarded because of the assumed

relation among r,, r2, and rz and is replaced by the following

continuity relation for the entire annular area:

r2,t rl,tf O r dr,=f Glradrl (22c)
j r_,^ J rl.h

Thus, equations (14g), (18b), and (20c) are used in this

calculation, with equation (22c) used as a check on total
mass flow.

When ds_/dr_ is negligible, the following equations for the

radial variations of pressure and density can be obtained

from equations (14g), (B4), and (B8):.

1

- -±dp_ Vo._ _ v dV_,_

Pt,_

(29)

p,._ ___dp, Vo.? v dV,., (30)
pt._• P' dr_-- r_ ----"_ dr_

In these two equations, the last term is very small compared

with the next-to-last term and may therefore be neglected.

Under the present assumption, this term becomes zero for

a nontapered passage and the' resulting equation may be

more directly obtained, as is usually done, by taking the

approximation involved in the use of

for the equation of motion in the radial direction in place of

1 gp_ V o,,2 V I_bV"_ _ dV,.,
p, dr_----_-_ -- _' _ k.bz-]_-- v,,, dr,

Equations derived from this basis of calculation in dimen-

sionless forms are given in appendix D for several types of

design.

Limiting case of zero aspect ratio.--Two limiting cases will

now be discussed for which the evaluation of the term \ bz ]_

can be avoided. If the blade row has an axial length suffi-

ciently great relative to the radial length (that is, if the

blade-row aspect ratioissufficientlysmall), the term \ bz }_

willbe negligiblein spite of any radial displacement across

the blade row. This extreme situatiou is designated the

zero-aspect-ratiocase and differsfrom the simpl_ed-radial-

equilibrium approximation in that the radial displacement

across the blade row is properly determined and its effect

on the state of gas is included in the calculation. The

continuity equation (22b) for individual stream sheets is

therefore to be satisfiedin addition to equation (22c), hut

equation (14g) is stillused in place of (14c). In the case

of gas-passage walls having no taper or slight taper, the

difference between the two cases is small; a successive-

approximation procedure starting with the result of the

simplified-radial-equilibriumcalculation can therefore be

used. This procedure may be outlined as follows:

i. With the given values at station 1 and one prescribed

condition at station 2, use the simplified-radial-equilibrium

equations to find _'_, V,.2,/-/2, and s at station 2 as functious

of rl; then compute G2(r0.

2. By using the value of G_(rO obtained from step 1, find

r2(r 0 from equation (C5).

3. Substitute this value of r:(r_) into equations (14g),

(18b), and (20c) to obtain a second solution for i'2, V,._, [_,

and s2 as functions of rl.

4. Repeat steps 2 and 3 if necessary, using the value of

G2(r0 obtained from step 3.

In the case where there is considerable taper at the passage

walls, it is better to assume r_(r_) according to the taper to

start the calculation rather than to use steps 1 and 2.
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Limiting case of infinite aspect ratio.---The other limiting

case corresponds to a blade row with axial length negligible

as compared with radial length, and is designated the infinite-

aspect-ratio case. The-negligible axial length does not

provide space for any appreciable radial displacement,

hence r2 may be taken as equal to rl, or

as=a, (31)

and for a tapered passage, either the preceding equation or a
relation similar to the one that follows may be used:

G2---- G1 rl't2--rl'h2 (32)
r2. 2_ rl .h 2

Either of these two equations now takes the plaee of the

continuity equation (22b).

Because the change in axial length for a very small change

in Vr is also very small, (5Vrfi)z)_ does not vanish. Although

its absolute value does not affect the radial motion because

of the negligible blade-row axial length, the relative value of

bVr/5z ahead of and behind a blade row is needed to

determine completely the distribution of gas properties at

these stations. If the loading of the blade in the axial direc-

tion is relatively uniform or the blade is designed to give a
sinusoidal radial-flow path, the curvatures, of the radial-

flow path at the two stations can be considered equal in

magnitude and opposite in sense. Then,

C
_]1= --\_-/2 (33)

In order to combine this relation with equation (14b) in a

simple manner, it may be assumed that

(34)

Combining equation (34) with equation (14b) at stations 1

and 2 yields

dHl . dH2 _ dSl . mds, _i d_1_:d_2_

Vz,. _l+ _2, dVz,2dr2 (34a)

For a typical stage of a given design, equations (14b),

(18b), and (20c), with either equation (31) or (32) and equa-

tion (33) or (34) will completely determine the variation of

gas properties at the two stations.

In appendix E, formulas are given in dimensionless forms

for two common types of design in order to calculate the

variations of gas properties for the two preceding limiting

cases. The results so obtained will give the limits of the

variation of the gas properties along the blade height. If

the difference is large, it is worthwhile to make the calcula-

tion for the given blade-row aspect ratio.

Approximate solution for finite aspect ratio.--For the

general cases where _'1 and _2 are prescribed in design as

9

functions of r_, an approximate solution for the radial dis-

placement across the blade row can be determined in the

following manner:

First take as two separate functions

Adr 0 the function (r2--rO of rl satisfying the radial-

equilibrium and total-enthalpy-change equations for

a given distribution of the other variables

Adr0 the function (r2--rO of rl satisfying continuity equa-

tion (22) for a given distribution of other variables

It is assumed in this method that the radial gradients in

V_ and i" depend primarily on the magnitude of the radial

displacement (r2--rO and not on its exact distribution.

Accordingly,

Adr0 =y_ g(rO (35)

where y_ is the maximum value of/_ and g(rO is a plausible

form for the distribution of A_ satisfying the boundary

conditions:

g (r,.h) -=g (r,. t) = 0 )

for t (36)
g' (r_._) =0, g(r_.,) = 1

If A_ is calculated for several values of Ae, it is possible to

plot y_, the maximum value of A_, against y_. A fairly good

approximate solution might he expected to correspond to

the point y_-_y_. This process can be further refined by

varying g(rO from the function originally assumed in the
direction of the calculated function Ady_.

By the use of this procedure, the following approximate
value for the magnitude of radial displacement across a

blade row is obtained (appendix F) : .

r r -- (r2--r,)_ (37)
2-- l-- I+A 2

This value can be used as a starting value for exact calcula-

tions or may be used as the final value for approximate

calculations.

APPLICATION TO DESIGN

DEGREE OF FREEDOM IN DESIGN

In the preceding analysis it was shown that within the

blade region there are only seven independent equations

relating the eight dependent variables that determine the

state of gas and the blade shape; whereas in the space outside

the blade, there are five independent equations that deter-

mine the five dependent variables determining the state of

gas. In the inverse or design problem, the designer therefore

has one and only one degree of freedom for prescribing a
reasonable radial variation of one single quantity in all blade

regions, of a different quantity in different blade regions, or

a single relation between several quantities. In addition, he

is free to specify the taper in the passage wall, the position
where the radial element of the blade is set, and a suitable

condition of gas at stations far ahead of and behind the

machine as boundary conditions, such as a uniform state of

gas entering the machine.
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In current design practice, design computation is made

only in the planes between successive blade rows in which

a certain desirable variation of one gas property can he

specified. The blades are then either selected from cascade

data or theoretically designed to achieve the calculated gas

states in these stations. For this reason, the following dis-

cussion of different ways of specifying these variations will

be centered in these planes: For simplicity, only the adiabatic

case is considered. Under this condition, if equation (18a)

is applied to the three successive stations of a stage and is

differentiated with respect to r,,

dH, ___ (d_2 dr_ d_,'_ dH_ dr2 dH_ dr3
drl \dr_ dr, dr1]-- dr2 dr,-- dr_ dr1 (38)

A few ways of taking up the degrees of freedom at these

stations between successive blade rows are listed in the

following paragraphs:

(1) Constant work per unit mass of gas flow over the blade

height. This condition is usually specified in the design of a

turbomachine. It relates i" behind the rotor to its value

ahead of the rotor by

_2(r2) =r_ (r,) + rl,,_tUl,, (39)

or

d_2 dr: dh
_=_t (39a)

where r,.t_tUt.t is equal to (_'2--_,) at the blade tip and is

also equal to (i'2--_,) at other radii.

Constant work over the blade height gives constant total-

enthalpy change over the blade height. If the velocity at

the exit of a stage is equal to that at the entrance, this

condition" also gives constant static-enthalpy change over

the blade height.

Under the condition of constant work, equation (38)
reduces to

dH, dH2 dr_ dH3 dr3
dr, -- dr2 dr1-- dr3 dr, (38a)

(2) Constant total enthalpy OVer the blade height:

bH 0
= (40)

This condition usually applies to the first stage of a com-

pressor and will hold for all succeeding stages if constant

work per unit mass over the blade height is employed. If a
nonzero value of dH,/dr, is desired, an initial preparatory

stage must be specially designed to obtain this value. In

the last stage, however, it is usually desirable that bH/br he

nearly zero.

(3) Free-vortex-type distribution of tangential velocity:

or

_=0 (41)5_

_=K_ (41a)

COMMITTEE FOR AERONAUTICS

This condition is commonly used in turbines and compres-

sors. Ignoring radial motion, in addition to this condition,

constant total enthalpy and constant axial velocity over the

blade height can be obtained. Considering radial motion,

only one of these two additional conditions can be obtained

in conjunction with equation (41). (See section NUMER-

ICAL EXAMPLES FOR TYPICAL DESIGNS.)

(4) Symmetrical velocity diagram. If V_.,=V_.2 and

rt=r2=r, the symmetrical velocity diagram gives

Ve.1--J- Vo,2=o_r (42)

or
_',+_'2=_or2 (42a)

Differentiatingwith respect to r yields

d_', m d_'2__ 2¢_r (42b)3_--_--

If r;#r2 or V,.,#V,.2, the symmetrical velocity diagrams

may be defined by

_-,(r,) + _'2(r2) ----wrl 2 (43)

Then,

d_'L+ d_'2 __ 2wrl (43 a)

With the use of the symmetrical velocity diagram, the aero-

dynamic limitations of gas flow through the rotor and the

stator are reached at about the same time. Reference 10

shows that the blade-profile loss is a minimum with the

symmetrical velocity diagram if the lift-drag ratio is con-

stant. For incompressible flow, the change in static pres-

sure or enthalpy is also the same in passing through the rotor

or the stator, and the stage is therefore often referred to as

the "50-percent reaction stage."

(5) Wheel-type distribution of tangential velocity:

Vo._=K_r_ (44)

or

dr_ = 2K_r_ (44a)

(6) Constant tangential velocity:

Vo,,=K, (45)

df_--K_
-- (45a)

(7) Constant axial velocity over blade height:

_V_=0 (46)
br

At a very low speed of gas flow w:__h no change in density,

the specific mass flow will also be constant over the blade

height; there will therefore be no radial flow across ._he blade

row and equation (14b) reduces to (with the entropy varia-

tion neglected)

bH _ b_-=O (47)
br r _ _)r . i



/

APPLICATION OF RADIAL-EQUILIBRIUM CONDITION TO AXIAL-FLOW COMPRESSOR AND TURBINE DESIGN 11

Xnd when

b_'=O
5_

The equivalence of equations (46) and (47) breaks down,

however, for current aircraft applications, where the speed

of gas flow is high.

If equation (47) is substituted into the radial-equilibrium

equation (14b) with entropy variation r, eglected, the follow-

ing relation is obtained:

5V_ i)V, 0 (47a)
_r 5z

The left side of equation (47a) is the tangential component

of fluid rotation V X V; thus equation (47) is a condition

for potential flow in the free space between blade rows.

If it is desired to take into account in design the effect

of the boundary ]ayers at the inner and outer walls of the

gas passage, instead of equation (46) an appropriate axial-

velocity variation close to the actual one may be prescribed

in design:

dV_ , , ,
-d_' = _ (to (46a)

(8) Constant specific mass flow over blade height. In

order to avoid radial movement across the blade row in com-

pressible flow, it has been suggested (for example, reference 11)

that constant axial velocity be replaced by constant specifi c
mass flow:

dG1 dG2 dGs _
-d_-= _- = _- = o (48)

Radial displacement can also be prevented by the use of two
conditions instead of three:

dGl dG2 dGs
d_-=d_- = dr- (49)

For designs using either of these two conditions, the simplified-

radial-equilibrium calculation is more correct. Des!gns '

employing no radial flow have the advantage that the cal-

culation does not involve any radial displacement across
the blade row and that the two-dimensional-cascade data

can be directly applied. The final equations derived from

these conditions (equations (48) or (49)), however, are diffi-

cult to solve and the conditions are incompatible with

tapered passage m a multistage turbomachine.

(9) Relative Mach number. For high performance, a cer-
tain variation of relative Mach number consistent with the

radial variation of solidity and thickness of blade may be

specified in design. Then for the rotor,

Vz.l_ + (Vo _--¢orl) 2 _l=M 2=_(ri) (50)

(7--1) [H, -1 (V,,,z + voa2) J

For the stator,

vJ+v,2 , 7=M_ _=_(r_i (51)

(7--1) [//2 -1 (V_.22@Vo,z2)j

(10) Untwisted rotor blades. For simplicity in fabrica-

tion, especially for a cooled turbine, untwisted rotor blades

may be used. Inasmuch as the flow angle is only slightly

different from the blade angle, the following relation may be

used in design:

d_l__ 0

d_2--0/ (52)
_._-- ,,

(11) Blades with all elements radial. For high-speed rotor

blades, in order to reduce centrifugal stress it may be desir-

able to have all blade elements radial. Then,

F,=o (53)

By using this relation, equation (12a) reduces to

F_----Kr

or

tan _=Kr (53a)

where K is a function of z.

In multistage machines, similar variation in either tan-

gential velocity, axial velocity, or specific mass fl0w may be

specified at the similar stations of each stage:

d_l d_s dr3
dr1-- dr3 drl (54)

dV_., d_.3 drs
drl -- dr3 drl (55)

or

dGl dG3 dr3
drl -- dr3 drl (56)

Stages of multistage machines designed for similar variations

of gas properties from stage to stage are termed "typical

stages."
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Types of design.---A large number of different types of
design may be obtained by different combinations of those
conditions specified in equations (39) to (56). These
designs may be conveniently divided into two groups. In
the first group, the condition of constant work at all radii is
specified in the design. That is, equation (39) is employed,
which gives:

" d_'l d_'2 ]

and dH, dH2 dH3| (57).

In cases where the symmetrical velocity diagram is also

specified, by using equation (43a), equation (57) reduces to

_=_- .
and (58)

dHt dH2 dH3
drl -- drl -- dr1

In the second group, the condition of constant work is not
specified.

The following tables present a few types of design in each
of the two groups for multistage turbomachines consisting of
a number of similar stages. The manner in which the
degree of freedom is used up at each station of a typical
stage and the known characteristics of each type are given.
The typical stage is considered to consist of a rotor followed
by a stator.

These conditions specified for the typical stage, as given in
the table, completely determine the flow over all the stages.
The flow in the inlet guide vane, if required, is to be deter-
mined by the given condition at the inlet to the machine
and the condition specified at station 1. Similarly, the flow
in the last stator is to be determined by the condition speci-
fied behind the last rotor and the given condition at the exit
of the machine.

It may be desirable for certain applications to use different
types of design in a multistage unit. Those designs can be
obtained by using only the relations of different types at
stations 1 and 2 in the table.

GROUP I

Type

1. Free vortex

2. Symmetrical velocity
diagram

3. Wheel-type tangen- !

tial velocity in front
of rotor

4. Same variation in

axial velocity

5. Same variation in

specific mass flow

Station
Conditions speci-

fied at 3 stations

of any stage

d_'_
1 ----0

dr I

2 Constant work

dff_l d__33
dr 1 dr!

1 Symmetrical vc-

locit y diagram

2 Constant work

d rJ ffi d fj3
dr I dr 1

1 d_1_2Krl
dr I

2 Constant work

dr I drl

1 [/ Constant work
dl_ I dVz 2

2 -'-2 -'"

dr I dr I

dV_ _ dV,
3 ""_ "'°

dr I dr I

Constant work

d(tl dG2

dr I dr 1

dql dq3

dr 1 dr I

dri d_ 2 d_ 3 ,0

dr I dr 2 dr3

dH_ dH_ dH3
dr I dr I dr 1

d_l d_2 d_3

dr 1 dr t dr I _rl

dH 1 dH 2 dH 3

dr I dr I dr 1

d_ I d_2 d_s
2Kr 1

dr I dr 1 dr 1

dH_ dH_ dH3
dr I dr I dr1

dr, d_ 2

dr I dr 1

dg! dH 2 dH 3

dr I dr 1 dr 1

dT_. 1 dV,,2 dV_.3

dr I dr 2 dr 3

d_d_

dr I drl

dH 1 dH 2 dH 3

dr 1 dr I dr 1

dG 1 dG 2 dG 3

dr I dr I drl

C haracteristlcs of flow

Vo ,_= Kdr _

Oonstant axial velocity over blade height for incompressible flow.

Small radial gradient in axial velocity for compressible flow.

_rl $tUl't rl'l I
VS'I 2 2 rl _Combination of wheel-type and

/mrl StUl.t rLt) rl I vortsx-typetangentialvelocities._'_,_-+-_- W _.I
Large negative radial graJient of axial velocity at all stations.

VO ,I _ Kr 1

r 1

Large negative radial gradient of axial velocity at all stations.

For incompressible flow. this type requires no radial flow across
blade rows and is equivalent to first type in group, For corn- I

pressible flow, small radial gradient exists in _'.

No radial flow across rotor and stator blades for nontapered

passage.

Additional remarks

bH

If _-rffi0 at inlet to machine,

5H
--=0 at all stations.
0r

5H

If _r=O at inlet to machine,

bH
--=0 at all stations.
Or

bH

If _-r=O at_ nlet to machine,

bH
--=0 at all stations.
br

bH

If _-rffiO at inlet to machine,

bH
--=0 at all stations.
5r

5H

If _-r =0 at inlet to machine,

bH
_=0 at all stations.
Or
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Type

l. Constant specific mass flow

2. Constant axial velocity

3. Untwisted rotor blade

Station

Conditions specified I

at 3 stations of any !
stage

dG!
1 --_0

dr I

d(_ 2
2 --ffiO

dr 2

dG 3
3 ----0

dr 3

1 dVz, lso

dr 1

dVz.2ffiO

dr 2

dVz,3 0

dr 3

_lffi 0

dr l

d02_o
dr 2

_-o
dr 3

Characteristics of flow

dG t dG2 d(t s

dr I dr 2 dr 3
No radial flow across all blades in nontapered passage.

dVz. I d_, 2d Vz. 3 0 No radial flow across all blades in nontapered passage for incompressible flow.

dr 1 dr 2 dr 3

d_ t d$_ d_ 3
0

dr 1 dr_ dr 3

NUMERICAL EXAMPLES FOR TYPICAL DESIGNS

The methods of calculation previously outlined are applied

to the typical stages of compressors of types 1 and 2 of group I,

as given in the table. The inlet total enthalpy is assumed

uniform with respect to radius; and with work exchange

with rotor uniform along the radius, total enthalpy is con-

stant with respect to radius in all stations. The calculation

is rendered dimensionless by expressing all velocities in terms

of U_, total enthalpy in terms of Ut 2, and r in terms of rt.

Because the main purpose of the calculation is to deter-

mine the magnitude of the oscillatory radial motion and its

effect on the radial distribution of gas properties, a non-

tapered passage wall is used. Heat transfer is assumed to

be zero in the calculation and the entropy is assumed to be

constant at each station. The change of entropy across
the blades at all radii is assumed equal to that obtained from

the polytropic efficiency assumed at the mean radius. This

calculation does not take into account the boundary layers

at the rotor drum and the outer casing, and consequently

is good only for the main portion of gas flowing between
them. This restriction can be removed if more data on the

variation of n with radius are available.

In the comparison of different blade-row aspect ratios in

each design, in addition to the same aerodynamic limitations,

the same axial velocity at the mean radius is used. The

comparison between different cases will be slightly different

if another basis of comparison is used.

Symmetrical-velocity-diagram and constant-total-enthalpy
compressor.--Because the difference between zero- and

infinite-aspect-ratio cases is found to be large in this design,

two calculations are made for a blade-row aspect ratio of 2;

one calculation is based on a prescribed sinusoidal radial-

flow path, the other is based on the approximate solution of

equation (37). The equations based on prescribed sinu-

soidal radial-flow path are given in appendix G. The follow-

ing design constants are used for all cases:

Hub-tip ratio ............................................ 0. 6

Limiting Much number relative' to rotor blade ............... 0. 8

Limiting value of Vs.2-- Vo._ O. 7
Vz ,1 ...............................

Polytropic efficiency at mean radius ........................ 0. 9

V,.I.m/U, ............... : ................................ 0. 772

Vo._--Vo.1 is based on a formula given
The limiting value of V_.x

by Howell (reference 12). The last value results from the

use of V_.l.h/Ur=0.8 in the simplified-radial-equilibrium

calculation, and is used for all cases. The results of the

calculation are shown in figure 4.

The distribution of specific mass flow ahead of and behind the

rotor for the different cases considered is stlown in figure 4(a).

It may be seen that in all cases except the infinite-

aspect-ratio case, the specific mass flow G/G_ increases to-

ward the hub faster behind the rotor than ahead of the rotor;

that is, passing through the rotor, the gas moves toward the

axis of the machine. The magnitude of this displacement is

obtained from the continuity equation (C5) and is shown in

figure 4 (b). In the simplified-radial-equilibrium calculation,

it is assumed that there is no radial motion, but when the

distribution of specific mass flow is substituted in the con-

tinuity equation (C5), quite large radial displacement across

the blade is obtained. This kind of calculation is therefore

inconsistent. In other calculations, the distributions of gas
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properties are calculated from assumed radial displacements
that are to be checked with the displacements required from
the continuity relation with these distributions, and are
therefore consistent in themselves. The radial displacement
used in the approximate calculation for A=2 is obtained by
the approximate formula, equation (37), and is about 25 pro'-
cent lower than the value obtained from using the sinu-
soidal radial-flow path.

The variation of axial velocities is given in figure 4(c),
which shows that the axial velocities increase toward the hub

in all cases, but at different rates. The high value of axial
velocity at the hub enterirLg the rotor blade allows the use
of higher turnings at all radii without exceeding the limiting
value of (Ve,2--Vs,1)/V,.I or zCL at the hub. It also helps

/.0

___i, X

.7 --_

"X
.6

1.0 Z2 I.d 1.6 0 .01
G/G_

(a) Distribution of specific mass flow.
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: : ....... A-Z
: -----A=cO
i t -- s.ne., (A_,)

//,,..........>/

.02 .03 .04

_t -T'h

(b) Radial displacement across rotor.

v_,/_ v_u,

(d) Variation of tangential velocities.

(c)

I
--A=O
..... Affi2
--.-- A =oo

-- S.r.e.

..... A = 2, approximate

I

,_,:, \ ! \,,,',,
_ i (°" _""" e.2

1

v_
R_

\ i. 'tx\
.G .S

_1 u,

(c) Variation of axial velocities.

3O

f

//
(e) , :/ /

I
,dO

r,. ,

#

;::'/
,/ --A=O

----- A =oo

..... A = E, approximutc

5O

H/r angle, deq

DO

(e) Variation of air angles.

FIGURE 4.--Symmetrical-velocity-diagram and censtant-total-enthalpy compressor.
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(f) Variation ol Maeh number relative to rotor blades.

to give a more uniform Mach number relative to the rotor
blade over the blade height. As a result, this type of design
gives a higher pressure rise and a higher specific mass flow
than a free-vortex type of design using the same design
limitations. In order to utilize this advantage fully, the
variation of axial velocity should be correctly determined.

The calculation of axial velocity based on simplified _dial
equilibrium gives a result close to the zero-aspect-ratio case,

which is also true in the distribution of other propertie_ in
this calculation, because in the case of zero aspect ratio, the
curvature caused by radial motion is negligible and the
difference in gas properties caused by the radial displacement
is very small in the nontapered passage.

The variation of tangential velocities is shown in figure 4(d).
These velocities in different cases vary in a similar manner
and the difference of magnitude between them is mainly
due to the different value of _t determined by the different
values of _,I.UUt in the various cases.

Figure 4 (e) shows the variation of air angles entering the
rotor and stator blades. The difference between the simplified-
radial-equilibrium calculation and the case of aspect ratio
of 2 is significant throughout the whole blade height. The
simplified-radial-equilibrium calculation gives a value about
3° lower than the aspect ratio of 2 at the tip of the rotor
blade and at the hub of the stator blades.

The variation of Mach number relative to the rotor blades

is shown in figure 4(f). The simplified-radial-equilibrium
calculation gives a nearly constant value; whereas the more
correct calculations show that Mach number actually de-
creases about 10 percent toward the tip for the case of blade-
row aspect ratio equal to 2. (This variation, however, is
only about one-third of that of a similar free-vortex com-
pressor.)

The pressure distributions ahead of and behind the rotor
and the pressure rise across the rotor at different radii are
shown in figure 4(g). The difference in pressure distribu-

A -0 -A -2 A -co

u,
At tip

At meon rodk_s

A t hub

i I _ _ i i Ii _ - - A=O I i

r I ! 1 ....... <_oz 1 I
i , ' t --'-- A= co ', J , IIi __ _e i ]• " " ' _ Ii ........ A = 2, optgrox_mote

i _ i I i I.__ _ i

t _1 i I i / l /_// i i

" i # - / J_,,/11 ': I

i I I/I i _Zil

LO I.I ._ 1.0 I.I 4£ L3

P, IPi, _ p21pz,_ p_ Ip,

(g) Pressure distributio_s and pressure rise across rotor. (h) Velocity diagrams at different radii.

FIGURE 4.--Concluded. Symmetrical-velocity-diagram and constant-total-cnthalpy compressor.
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tions may explain to a certain extent the difference found

between measurement and the simplified-radial-equil!brium
calculation. The pressure rise across the rotor is fairly
uniform in the case of an aspect ratio of 2 and is a desirable
feature.

The velocity diagrams at three radii for aspect ratios of 0,
2, and _ are shown in figure 4(h). If this stage is used as
the first stage of a compressor, the permissible tip rotor
speed of this design at standard sea-level conditions is equal
to 868 and 826 feet per second for A----0 and A----21 -respect
tively. The specific mass flow per unit annulus area, cor-
rected to standard sea-level conditions, is equal to 41.5 and
40.0 pounds per square foot per second for A=0 and A=2,
respectively.

/.0

.7 -_0 ¸

(gt) / (b)

90 .92 .gd .96 .98 1.00 0

(a) Distribution of specific mass flow.
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Free-vortex and constant-total-enthalpy compressor.-
The design constants used are the same as in the previous cal-
culation. In addition, V¢1 and V¢: are considered to be equal
to W02 and W0.1, respectively, at the mean radius. In this
type of design, the simplified-radial-equilibrium approxima-
tion is equivalent to the zero-aspect-ratio case, because, due

\
\

--A =0 or s. I.n_e

-----.4.=(0 /

./

.OOd .008 .012
T's - _#.

.8

.8

.7

(b) Radial displacement across rotor.

\
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/

30

A/r angle_,deg

i

i

/

4O 5o

(c) Variation of axial velocities.
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•f .8 /oo
v_,I_

(d) Variation of air angles.

.5

(e)

--_A =0 or _.r.e.

-A=OO

,/

/
/ /

,/
/

._ .7

w1/al

(e) Variation of Maeh number relative to rotor blades.

/

.8

FIGURE 5.--Free-vortex and constant-total-enthalpy compressor.



APPLICATION OF RADIAL-EQUILIBRIUM CONDITION

to the constant value of rVo in this design, the radial motion

across the blade does not affect the calculation in the zero-

aspect-ratio case• That is, the same values of H_, H2, _'_, _'_,

V=._, and V=,2 occur in both cases and the entire calculation

is the same. (See also equation (F6).)

Because the radial motion involved in this type of design

is mainly due to the compressibility of gas, the difference

between the zero- and infinite-aspect-ratio cases is not large;

hence the calculation for a finite-aspect-ratio case is not

made.

The distribution of specific mass flow ahead of and be-

hind the rotor is presented in figure 5(a). Even in the zero-

aspect-ratio or simplified-radial-equilibrium

.9

case with a

.7

, (f):

" % ) I O0

P,/P,,_

(f) Pressure distributions and pressure rise across rotor.

t

I
I
!

L20

A:O or s.r,e. A=_

_" Ut A/" t,_o U,

z, Ul,_ A f meon radius '_ _' _

Uh
U_ At hub

(g) Velocity diagrams at different radii•

FIGURE 5.--Concluded. Free-vortex and eonstant-total-enthalpy compressor.
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constant axial-velocity distribution, considerable change

occurs in density, which requires an appreciable amount of

outward radial motion to obtain the given design conditions

behind the rotor• Although the amount of this radial motion

is small (fig. 5(b)), its effect on the variation of gas properties

is not entirely negligible• Its effect can be seen in the curves

of figures 5(c) to 5(g), which are somewhat similar to the

symmetrical-velocity-diagram and constant-total-enthalpy

design in nature but of smaller magnitudes•

If this stage is used as the first stage of a compressor, the

permissible tip rotor speed at standard sea-level conditions is

equal to 758 feet per second for A=0. This tip speed is

about 13 percent lower than that of the corresponding case

of the previous design• The specific mass flow corrected to

standard sea-level conditions is equal to 38.6 pounds per

square foot of annulus area per second for A----0, which is

7 percent lower than that of the corresponding case of the

previous design•
Free-vortex and constant-total-enthalpy turbine.--The

design constants usec[ in the calculation are: _/_ 1, U#al.t=

0.5, V_.LUal,,=0.8, V_.l.m/aLt=0.4, V0.2----0, and polytropic

efficiency at mean radius equal to 0.87. For the simplified-

radial-equilibrium approximation or zero aspect ratio,

V_4/Ut is constant and so is V_.2/Ut, which is found by the

continuity relation to be equal to 0•877• The same velocity

at station 2 is used for the infinite aspect ratio, thus making

the only difference at station 1. The results of the calcula-

tion are shown in figure 6.

The distribution of specific mass flow ahead of and behind

the rotor is shown in figure 6(a). Because of the constant

axial exit" velocity, the specific mass flow is constant behind

the rotor• Except for the case of infinite aspect ratio, there

is an inward radial motion of gas in passing through the rotor

(fig. 6(b)), the magnibude of which is about two and one-half

times that in the previous free-vortex compressor (fig. 5(b)).

U i"
.Q

J ;i8*" __

I
.8 .9 l.O

alar

-- A : 0 or s.r.e.
----- A= oo

/
/

J

\
\

)
/

/

.OlO .015 •020
T'I- ¥_tt

rl - _a

(a) Distribution of specific ma_ flow. (b) Radial displacement across rotor.

FIGURE &--Free-vortex and eonstant-total-enthalpy turbine.
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The variation of axial velocity ahead of the rotor is shown

in figure 6(c). An increasing axial velocity toward the hub

of about 15 percent would be required for an aspect ratio of 2.

Figure 6(d) shows the radial variation of gas angles

entering rotor blades. The difference is only important at

the hub. In the actual case of an aspect ratio of 2, the

simplified calculation would give an angle of attack 3 ° to 4 °

too high at the hub.

The absolute and relative Mach numbers of gas ahead of

the rotor are shown in figure 6(e). In the actual case of an

aspect ratio of 2, the Mach number at the hub is about

3 percent higher than the simplified calculation.

Figure 6(f) shows the pressure distribution ahead of the

rotor. For an aspect ratio of 2, the pressures at the tip and

at the hub are about 2 percent higher and 3 percent lower

than the simplified calculation, respectively.

The velocity diagrams at three radii for the zero and

infinite aspect ratios are shown in figure 6(g).
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(e) Variation of Math number ahead of rotor.
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(g) Velocity diagrams at different radii,

FIGURE &--Concluded. Free-vortexand constant-total-enthalpy turbine.
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SUMMARY OF ANALYSIS AND CALCULATIONS

In axial-flow turbomachines, radial motion of gas occurs

because of the tapering of the passage walls and the variation

of gas conditions across blade rows specified in the design.

The direction and the magnitude of this radial flow depend

on the type of design, the tapering of the passage wails, the

blade-row aspect ratio, and the Mach number of gas flow.

Even in the free-vortex type of design employing nontapered

passage walls and requiring no change in velocity distribu-

tions from stage to stage, an appreciable amount of oscillatory

radial motion occurs within the stage.

This radial motion gives an additional term to the ordinary

radial-equilibrium equation. In the free space between blade

rows, this additional term is approximately equal to the

product of the square of axial velocity and the curvature

caused by the radial flow. Depending on whether the

curvature is positive or negative, the ra_lial pressure gradient

caused by the whirling motion of gas is decreased or increased,

respectively, by this additional term.

The determination of this radial-flow path requires a long

process of step-by-step calculation. It is found, however,

that a sinusoidal radial-flow path gives an effect on the

radial variation of gas condition between blade rows as

small as possible without discontinuity in the curvature of

the streamline. It may therefore be desirable to prescribe

this simple radial-flow path in the design. Also, inasmuch

as it represents the major harmonic of the radial-flow path

that may exist in any design in which the blade loading is

relatively uniform in the axial direction, the calculation

based on this simple radial-flow path gives good, approximate

results.

Methods of solution for the limiting cases of zero and

infinite blade aspect ratios and a simple approximate solution

of the radial displacement across the blade row having a

finite aspect ratio are also obtained.

The analysis made of the maximum compatible number

of the degrees of freedom in specifying the radial variations

of gas properties in stations between successive blade rows

of a turbomachine shows that the designer is free to specify

one such variation at each of the stations. The various

ways to use up these degrees of freedom and the resultant

types of design obtained are discussed.

The usual method of calculation, which neglects the radial

motion, gives results close only to the case in which the axial

length of the blade row is much larger than its radial length,

and is not good for the case of a finite blade-row aspect ratio.
The difference between the results obtained by the usual

method and the method suggested herein is found to be

quite large in a design employing constant total enthalpy

and a symmetrical velocity diagram along the radii. Calcula-

tion made for this type of compressor, using the same limit-

ing Mach number, same limiting turning, same axial velocity

at the mean radius, and for a blade-row aspect ratio of 2,

gives the following differences between the usual and the

suggested method:

1. The radial variation of axial velocity ahead of the rotor

is 13 percent for the usual method and 28 percent for the

suggested method, and the radial variation of axial velocity

behind the rotor is 53 percent for the usual method and

40 percent for the suggested method (all expressed in terms

of their values at the mean radius).

2. The air angles differ from 1° to 3 ° at the hub and at

the tip.

3. The radial variation of Mach number relative to the

rotor blade in the usual method is 9 percent lower than

that in the suggested method.

4. The radial variation in static-pressure rise across the

rotor is 13 percent for the usual method and only 2 percent

for the suggested method.

5. The mass flow in the usual method is 4 percent higher

than that in the suggested method.

6. The allowable rotor speed in the usual method is

5 percent higher than that in tile suggested method.

LEwis FLIGHT PROPULSION LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

CLEVELAm), OKIO, January 1, 19/_9.
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The following symbols are used in this report:
rt--rh

A aspect ratio of blade row, L

a velocity of sound

C,. lift coefficient

co specific heat of gas at constant pressure

c0 specific heat of gas at constant volume
D

differentiation with respect to time following motion
Dt

of gas

external force per unit mass of gas (genel'al case);

circumferentially uniformly distributed blade force

per unit mass of gas (axially symmetric case)
F, radial component of F

F_ axial component of -_

Fe tangential component of -F

f form of radial-flow path

G mass flow per unit flow area perpendicular to axis

of turbomachine

g form of radial-displacement distribution
V 2

H total enthalpy per unit of gas, h_-_-

h enthalpy per unit mass of gas, uT p-
P

K constant

k thermal conductivity of gas

L axial length of blade row (fig. 3)

M Ma_c_h number of gas

m mass of gas

n polytropic exponent of actual expansion or compres-

sion process of gas

p static pressure

Q heat input to unit mass of gas along its path of motion

per unit time from neighboring gas particles in

general case or from blade and passage wall in

axially symmetric case

gas constant
radial distance measured from axis of turbomachine

mean radius of radial-flow path (fig. 3(a))
r

rt--rh

entropy per unit mass of gas

simplified-radial-equilibrium approximation

absolute stream temperature of gas
time

magnitude of U

vector velocity of blade at radius r

internal energy per unit mass of gas with 0 ° absolute as

base temperature

V magnitude of

20

APPENDIX A

SYMBOLS

V

v_
v,

W

W

Wo

Y
Z

absolute vector velocity of gas

radial component of

axial component of

tangential component of

magnitude of W

vector velocity of gas relative to rotor blade

tangential component of W

maximum radial displacement over blade height

distance along axis of turbomachine

angle between absolute velocity of gas and axis of
turbomachine

angle between relative velocity of gas and axis of

turbomachine

_. ratio of specific heats, c_/co

A radial displacement across rotor, r2--r_

dimensionless turning, _2--_1
rl Ul,t

_" angular momentum about z-axis per unit mass of

gas, r V_

7/ small-stage or polytropic efficiency

angular coordinate measured from some fixed radial
line

absolute viscosity of gas

p mass density of gas

a blade solidity

dissipation of energy due to viscosity per unit volume

of gas per unit time

.function

x angular coordinate measured relative to rotor

angular velocity of blade

Subscripts:

1
2

3

C

e

h

i

J
k

1

m

n

ahead of rotor

behind rotor and ahead of stator

behind stator and ahead of next rotor

satisfying continuity equation

satisfying radial-equilibrium and total-enthalpy equa-
tions

hub

any station between two blade rows

any station

station short distance downstream of station j

limiting value

at mean radius

used with r to indicate radius-where maximum radial

displacement occurs

simplified-radial-equilibrium approximation

tip



APPENDIX B

DERIVATION OF EQUATIONS

From equations (4), (7), and (9), and the relations

R=c.--c. (Sl)
and

_=c. (B2)
V_

there is obtained

From equations (8) and (B3),

From equations (9) and (10),

T ds=dh -dp (B5)
p

By use of equation (B3),

By use of equation (7),

(s) 1 dp .y dpd_ _' =_,--1 p "r--1 p (BT)

_ 1 d(loge P)--r-----_ _ (Bs)

_t--1

1
-----v---_-d (log. T) --d (log. p) 0310)

Equation (1) may be written as

• - D
V.V+_ log. p=0

Combining with equation (B10) yields the following form of
the continuity relation:

- 1 D
V. V-F_]-_ log, T--D (R)=0 (la)

From equation (2) and the following relations

DV b_ - -
_- =_-+ (V.v) V

and

W.v) V= _ v v 2-Vx <vx

there is obtained

bV
bt

1 {2 [ (V_).V]"_q'-(V_.)X (VX_) -2 (V._') (V#) } (Bll).

From equations (B4) and (B6),

2

=VH-- TVs

Combining with equation (B11) yields

From equations (8) and (B5),

DH_,rDs _ I Dp_L y7 DV
Dt -- _ Dt'p Dt "--"

Ds 1 bp -- 1 D--

By combining with equation (2),

_{1 _ - I)2 [(v,).v] V+ (v,) X (vx t0 -g (v.V)(v,)p

When combined with equations (3) and (10),

2 [(v.).vl V+ (v.) × (v×V)-gp

From equations (3) and (10),

Ds . _b
T_=Q+ 7

or

Ds Q 4_ _, 0 (3b)
Dt-- T" _" p

For steady axially symmetric flow of nonviscous fluid,

equation (3a) reduces to

DH t_-_' V (B12)

From equation (11),

F.V=F.U

=FoU

-_- r _oo_ (B13)
21
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From equation (15),

rFo=Vr _ + Vz i)(rVo)_)z

D(rVo)
Dt

Combining equations (B12), (B13), and (B14) yields

DH D(rVo)
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(B14)

(18)

For steady axially symmetric flow of a viscous fluid,

equation (18) is obtained by applying motion and energy

equations to a mass system with a fixed control surface,

as shown by the solid lines in figure 2. Under steady

axially symmetric flow, the mass inflow dmj in time dt is

equal to the mass outflow dm_ in time dr, the state of gas

within the control surface is unchanged, and the state of

gas at stations j and /cis constant with respect to 0. By

equation (Bll), the sum of the tangential blade force and

the tangential viscous gas forces exerted by the surrounding

gas particles on the system is equal to

1 D(rVo) dmj
r Dt

The torque about the z-axis exerted by these tangential

forces on mass dmj is therefore simply D(___)_ dmj and tile

work input to mass dm_ by these tange'ntial forces in time

dt is equal to

D(rVo) dm_ o_ dt=_o[ (rVo)_-- (rVo) j]dmj
Dt

In passing from station j to station k, in addition to receiving

this work input, the gas particles are doing work against the

axial and radial viscous forces exerted by the surrounding

gas particles. This negative work is usually small, however;

if it is assumed that the heat generated by the frictional

work is added back to the same gas stream, the heat addition

cancels the negative work, and the energy equation for

steady flow gives

pt

(Hk--Hj)dmj= Jtik Q dmj dt +o_[ (rVo)k-- (rVo) j]dmj

DH ,_ , D(rVo)

_i = u-r-o, D_ (18)

or

where Q denotes the rate per unit mass at which the gas

stream sheet is receiving heat from external source through

blades or other passage walls.

When equation (19) is given, the entropy change can be

obtained in the following manner: From equation (B10),

D {s'_ 1 D D
Dt \R]=_ _ og, T--_t log_ p (B15)

But by equations (19) and (7),

D 1 D
Dt log_ P=_I--1 _t log. T

Substituting into equation (B15) gives

Ds
D-t og.T

n--v D log_ T
=R (n-- 1) (_,-- 1) Dt

(B16)

For steady axially symmetric flow, equation (B16) reduces

to

Ds n--'y ( V, _ log_ TW V b_=R (n--l) (7-- 1) _ log, T) (20)

For successive axial stations j and/c a short distance apart,

equation (B16) gives

n--7 [log_ T_(rk)--log. T_(rj)]
s_(r_) --sj(rj) =R (n-- 1) (7-- 1)

T_(rg
n--_, log_ (B17)

----R (n-- 1) (7--1) Tj(rj)

Inasmuch as the temperature change between the two

successive stations is small, if the enthalpy is measured with

0 ° absolute as the base temperature, the temperature ratio

can be considered equal to the enthalpy ratio:

V__
T_hk H_ 2

_-- h----H, Vj 2 (B18)
2

Substituting equation (B18) into equation (B17) gives

s_(rk)--s_(rj)=R

yk

n--7 H_ 2 (20a)
(n--l) (7--1) log_ Vj 2

H_ 2

The density ratio between the two stations is obtained

from equation (B10)

t

p_ (T_ '_-_'
_=\_} e a (B19)

Combining with equation (B18) yields

---- 8k--S i

0__ e R (B20)

Substituting into equation (22) gives

__ 8f

( V--_2) ''k (-V,2"_¥_-]e-P, dr ,V_._ H_ _ _ _ e -_ rx dry= V,._ tt_--_-) r_

(22a)



APPENDIX C

DETERMINATION OF RADIAL DISPLACEMENT BY USE OF CONTINUITY EQUATION

Equation (22) may be written as a linear differential equa-

tion for r22 as a function of rl, provided G2(rl) is known:

d @22) G1 @1)
_-=2 _ rl

r1., G1 (rl)r22=-- 1 G2(r,) 2rldrl+r2"t2 (C1)

when divided by r_,_2,

( rL'_ l_(rL[_ _q., Gl(rl) rl drt
r2../ -- \r2.t/Jrt G:(r_) 2 rl,t r_.t (C2)

If G1 and G2 are unknown and only G1/GI, t and GJG2.t are

known, a modification is necessary:

GI

(r__2"_21_(rl,2_2 et t ;rt,t el,t (rl) rl drl\r:,t/- \r2.t/ G2._ l G2 2 (C3)

' G2., (ri) ri., r,,

The value of G_,t/G2,, is found by the condition that total
mass flow at stations 1 and 2 is the same:

(rl,[_2 Gl._= 1--(r2'_ 2\r2, j

\r2.t./ G2,t Gt

.... G1,_-t(rl) rl drl,.h G__- 2- --
G2., (rl) rl., rL.,

(C4)

Hence

r--2_2--1 F1 (r2'h_21
r2.t/ -- --k --\_2./ _1

G_

r,,, G.,., (rl) rl dr1
1 G2 rl,_ rl.t

61

r,,, GlUt (rl) rl dr1,,a G2 rl ,r_.,
G2,--_,(r,)

(C5)

APPENDIX D

EQUATIONS FOR SIMPLIFIED-RADIAL-EQUILIBRIUM CALCULATIONS

Equations to calculate distributions of gas properties at

three stations of a typical stage under the simplified-radial-

equilibrium approximation for a few types of design are

given.
GROUP I

Free vortex.--For this design,

di'_--0 (D1)3V,-

When the inlet total enthalpy is constant with respect to r

and the radial variation of entropy is negligible, equation (14g)

reduces to

dV_'_=O (D2)
dr_

The variation in tangential velocity is, by equation (D1),

V_ rt, t
Vo._= o.,._ _- (D3)

At each station, by using equations (30) and (D3),

p t _p (Vo,trt) 2

When the preceding equation is integrated from r to rti aL_

the relation

is used, there is obtained
]

P tl 7--1 Vo.t z r_ 2 }_-

This equation holds for all stations, provided the appropri-

ate values of (V_.#at) are used. It follows from equa-

tion (D2) that at each station

G_ p (D5)

The radial position of gas at station 2 or 3 can be obtained

by numerically integrating equation (C5) using distributions

of specific mass flow given by equation (D5). An alternate

method is to expand the right side of equation (D4) into a

7--1 (Vo.t_T(r_'_l]isusuallybinominal series. Because _ \ a_ / L\ r/

less than 0.15, three terms will be sufficient. Let _ repre-

sent the average density in the annulus between r and rt,

then

Pr ;rt 2_rpr dr

p_--_r(r_2--r2) p_

. _1 ['Vo (Vo,,_+

\W/ 1-(L +
\rj

and inasmuch as

... (D6)

Pr., Vz., (r,. ,_-- rl _) =p_,2 V_.: @2.ts-- re:)
23
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Then

_,.l(rue--rl 2) Vz.2 Oh.l(rl._2--rl.n 2)
- (r 2 r2_=T_-=- rr 2 r 2_
Pr,2k 2,t -- 2 ) Vz, l Ph,2k 2,t -- 2.h }

__ | \ r2 ! "_M(r2"_2 1 Fl-(r2'a'_2q F1 (r1"_27

L --\_u/.J Pn._

The change of total enthaipy across the rotor is

H2--H,=_(i'_-- _,)

H21 _(_2--_,)
Hi-- + H1

(D7)

where

the quantity

Inasmuch as

For compressor,

/-/2__1 r,.h V_.I.n r,.h U1.,2
1-11-- -_ rL, UI., V_.I.n [-11

r2._ Vo,2,h-- Vo,l,h
rl.h

V_.h is to be chosen by the designer.

H,--h1 _+ V_?

d_ 2-- l,t 1

.y-1 t-5 (V'a":'+ V°""_)

and

al t2_ Wl,t 2

1
=_ [Vz,l,t2J[ " (Ul,t2-- Vo.l,t) 2]

where M, is the limiting Mach number to be chosen by the
designer,

r2,_ Yo,2.h-- Vo,t
rl.h Vz.,.a ri.h
rl,t Ul,t Vz,1, h

(D8)

The pressure distribution at each station is obtained by
raising its density distribution (equation (D4)) to the power %
The pressure changes between the stations at different
radii are obtained by combining these pressure distributions
with the pressure change across the rotor at the radius where
the value of the polytropic exponent is known or assumed.
The angle that the gas velocity makes with the axis of the
machine at any radius is obtained from the known tangential
and axial velocities.

Symmetrical velocity diagram.--For the nontapered pas-
sage, r_=r2=r and from equations (39) and (42a)

d_l d_2 r
3_= -d7 --

_l-- °Jr22 ru_tUu2 (D9)

_r 2 ru_ tUu

or

V.alr 6, r_, l
U,., 2r Y,, _-

(D10)

1_=2 r_,,-- 2

When equation (D10) is substituted into equation (30),

p_ _-2i)O _2r___tU_,t2 t 1 1

where the minus sign is used for station 1 and the plus sign
for station 2. Inetgration from r_ to r yields

_.= { 1-{ _--1 Ut2 E(_)2--(_)_ :F 4_ (-U-_)UI't2log_ _+r• 8 a_2

1

_{U:,,yfr? r?'(]_'-' (Dll)

where the minus sign is used for station 1 and the plus sign
for station 2.

For the case where the inlet total enthalpy is constant with
respect to radius and the radial variation of" entropy is
negligible, the variation of axial velocity is obtained from
equation (14g) :

dV, 1 d_
V_-=--_ 3_

= -- Ut. 72 \2r,. t__ 2r] (D12)

Integration from r_ to r gives

V.'_' /'V,,a'_ _ l(r 2 ra2"_4- r (D13)

where the plus sign in the last term is used for station 1 and
the minus sign for station 2.
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When both V0 and Vz are known, the radial variation of

density can also be obtained by applying equation (B20) at
the station:

1 ]o_ 2 (Vg + V?-) _-_

In the tapered passage, the gas is assumed to flow in

conical surfaces, which gives the value of r2 as a function of

rl. Equations (39) and (43) give the distributions of _"and
17o as shown by equations (E5) and (E6), respectively, given

in appendix E. The distribution of axial velocity at station 2

is the same as that given by equation (E8). The density

distributions can be obtained from equation (D14). After

these distributions are known, the distribution of specific

mass flow G is known and the radial displacement is found

by using equation (C5).

In compressors of this design, the maximum value of

r2.h Vo,2- Vo.,
rl,h is usually at the hub. Its value there is to be

Vz, x

set by the designer. Then

and

r2, h

_2,h___l,h rl,-- h Vo,2, b--Vo, l,h Vz, l,h

ua-- rt,h Ux,,-- Vz.l,h Ul.t

r2,n Vo _ h--Vo, t,h
a _rt,h _ rl,h_ V,,t,_ rt,a ' ' (D15)

In this type of design, the limiting Mach number is usually

at the hub. Hence the denominator of the last term of

equation (D8) should be replaced by

2 U 2 1 V 2 V, 2rm,.o_ J ,..-vo.,4 ]-__r( _ _,,,;_ ={_o,,.;_ -I
L\U,,,] \ U,,, ]J L\ x,,/ \ ,,,/J(_,--1)M,: -- _ -- "2 U " U

The rest of the calculation is the same as in the previous

design.

Wheel-type tangential velocity in front of rotor.--When

the case of constant total enthalpy is again considered at

the inlet and the radial variation in entropy is neglected,

with

Vo,l=Klrt---- Vo,t. _-- (D16)
tl.t

equation (14g) gives

dVz,12

dr 1 --
-- -- - 4 K_°'rl

Integrating from hub to radius r yields

Vz.f" = V_ .t.h_- 2 Kt _(rl _- rl. h2)

25

or

Vz'IS_ 2 (Vz'l'h'_ 2 o(Vg'l't'_2r(rl _2--(rx'h_21 (])17)
U_l..t//=kU_-i., ] --- _,.--_l.t, I [..\rl,t/ \rx,t/ ..1

With radially constant work input to the rotor, and a non-

tapered passage,

ro.Vo,2=Kx rt2 +aert,tUl,t (D18)
and

{ o,,,, , _ _

Yol t rl

4 _ at log_ r,.h-- (D19)

Equations (D17) and (D18) show that the axial velocity

rapidly decreases with radius at stations 1 and 2. If K_ in

equation (D16) is chosen to be _/2, the difference between

this type of design and the previous one is very. small.

GROUP n

Untwisted rotor blade.--Equation (52) gives

V°'_--_ri--tan _i=Kt (D20)
Yz,1

where i=1, 2. When equations (14g) and (D20) are used,

the following relation is obtained:

_r,]dVe,,_l_Vo,,2 _Ve,, dH, T dS, m2r,- '37, K,
(D21)

or

• Ks

[(I+K_)V_.,+K,o_r,] _-t-_ v,._ TO _ _._

dH, T_ _rl-- 2°_2r' (D22)= --d_ -

Either equation (D21) or (D22) can be solved by a standard

method of numerical integration. Equation (D20) is then

used to find the remaining velocity component. In equations

(D21) and (D22), dH:/dr_ in later stations, except at the

station ahead of first rotor, is, in general, not equal to zero

even if it is equal to zero at the inlet. These ratios are to

be determined by using equation (18b). The term contain-

ing entropy in the equations may be significant in the case of

cooled turbine.



APPENDIX E

The method of calculations is given for the two types of

design used in the numerical examples.

FREE VORTEX

Zero aspect ratio.--In this type of design, the zero-aspect-

ratio case is the same as that of the simplified-radial-

equilibrium approximation.

Infinite aspect ratio.--By equations (31) and (B20),

82-8_ _-1/V s,-,2\_-1
Y_.2 p, e _- i_e R I

2H,-- (Vo. 1_+ V,. 2)
2//2-- (V0._2+ V,,_ _) (El)

An additional relation between Vz,_ and Vz,2 is necessary

in order to solve the equation. In the section Limiting case
of infinite aspect ratio, two equations are suggested. For this

design, equation (33) gives

dV_,_ dVz
dr _-_=0

or

Vz.1 + Vz.2 = constant (E2)

and equation (34) gives

dVz1 . V dV*'2--O
Vz.1 _ + Z,2 dr --

or

V_.I 2+ V_,_ 2-- constant (E3)

Also from equations (F4) and (FS), when the square term

in 5_ is neglected

V_jV_.2=constant (E4)

Tile three preceding equations give practically the same
results.

A convenient procedure of calculation is as follows:

(1) In order to compare the result with other cases, the

same value of Vz.l._ may be used. From equation (El),

V_,2,_ is deternfined.

(2) Insert these values in equation (E2), (E3), or (E4) to

obtain the constant in the equation.

(3) Assume a number of values of V_._; obtain i_.2 by the

same equation. Then use the following equation, which is

obtained from equations (El) and (D3), to solve for r/r,:

[ _-'1 V \,-1

.,
- VH, / _-',Tz \_-l-I / _-_,T_ \_-1

26

" - EQUATIONS FOR ZERO- AND INFINITE-ASPECT-RATIO CALCULATIONS

(4) Plot V_,I and V=._ against r/r,, and obtain V_,_ and V_,2
at the values of r/rt desired. '

When the distribution of axial velocity is known, the den-

sity variation at any station is obtained from equation (D14).

The pressure variation at each station is obtained by raising

the density ratio to the _f power. The pressure changes

across the stage at different radii and the air angles are ob-

tained in the same manner as in the simplified-radial-

equilibrium calculation.

SYMMETRICAL VELOCITY DIAGRAM

Zero aspect ratio.--With radial displacement not equal _o

zero, the equations for tangential velocities are different

from the expressions of equation (D10). From equations (39)

and (43)

and

From equation

entropy,

d_l d_2__r.
,

t2=__t_r,.,_LT., j (E5)

Ve,l _'_! __ r_ rl.,_, ")

Ul.,--rl UI., 2rl., 2rl t (E6)Vo2 _2 ( r, A_r,.,_,_ r,
275.,- /

(14g), neglecting the radial variation in

V dV_, 1 d_,_._ ""=--_ _
dr, r,

For station 1, from equation (E5)

dV_., 12(_2_ r],t_t_Tl,l_ (1 t IVz,l _ rl 2 ] _0ri= -- Yl,t 2= .... rl ' t 2

Integrating from r_ to r_ yields

V, _\z /V,t _\2 r_ 1 ( r_ 2 rl,a2_

which is the same as equation (D13). For station 2,

V_.2 _= --_ k.2- _] _r_

rl

V_.2 d V_.2= --_ (o?r_2 + _U1.Z')dri

- _ U,,? --+-- \r,,,/

\ rL #

(E7)
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Integrating from rl.h to rl yields

r 1

2_{V_.2._'_ __ _z.t{'rl"]2 ( rl at] (rl )u, ] -\ u, ] 3_, hkr2/ _,.,+ __< d _ (E8)
rl,t \ rl, t�

which differs from equation (D13).

The density distribution at station 1 is the same as the

simplified radial approximation, whereas that at station 2 is

obtained by using equation (D14). The solution of this

case is a process of successive approximations. Values of

r2(rl) obtained in the simplified radial approximation can be

used here as the starting values.. Then the distributions of

Vo.2, V_.2, p2, and G2 are calculated from the preceding equa-

tions, and new values of r_.(r_) are computed from equation(C5).

Usually, only two or three cycles are necessary to obtain

the correct value, because the difference between this case

and the simplified-radial-equilibrium approximation of this

type of design is small.

Infinite aspect ratio.--The first equation for the condition

GI=G._ is the same as equation (El). The second equation

necessary to solve this case is a little more complicated than

di'_0.
that in the previous type of design because _ If equa-

tion (34a) is used,

V_, _ _"_ V_,2 dV_'2dr-= --_l (_ d_J-dr _2 _]d_2_

Then

or

'_ (_',+ h) = - _"r
_--r

Vz. d + V_. 2_= -- _r 2+ constant

_,1 t_/___ = _ _2 + constantVt 2
(E 10)

In order to compare the result of this case with other cases, the

same value of _,1._ may be used. Then from equation (El),

V is found, and the constant in equation (El0) is evalu-_._.,_
ated by using this set of V,,1.m and V_2._. A few values

of V_.I are assumed at any other given radius, with corre-

sponding values of V_.2 obtained from equation (El0). The

correct values of V,._ and I_,_ that will satisfy equation (El)

are obtained by interpolation.

After the distribution of axial velocity is known, the den-

sity distributions are obtained from equations (Dll) and

(D14), and pressure distributions, total enthalpy change,

and air angles are Obtained in the same manner as before.

APPENDIX F

APPROXIMATE VALUE OF RADIAL DISPLACEMENT ACROSS BLADE ROW HAVING FINITE ASPECT RATIO FOR GENERAL CASE
IN WHICH _'1 AND _2 ARE PRESCRIBED IN DESIGN AS FUNCTIONS OF rl

In the latter part of appendix E, distribution of axial veloc-

ity is expressed in terms of known H, i', r_, and r2(rl). Alter-

natively, this distribution can be expressed in terms of radial

displacement and its value determined by the simplified-

radial-equilibrium calculation, for which A_=0. For a

nontapered passage, it is seen from equation (14c) that

and

dV,,l V dV_,i,_. A_ (F1)

i 1
V_.2dV_,2 V dV_,2._ A_l/Tr_21V ,2dr2±._ d_2(r_12__,_2 )d_._ _'_'_ &, 2 \_] _ _'" _

. (F2)

(By substituting (r_÷A_) for r_, expanding 1+ in a bi-

nomial series, and neglecting terms of greater order than

(A_ _, equation (F2) becomes

V_.2 _'=V_a., dr: 2 \L] (V_.:)2(l+dr_)+

If G(r_) is known, equations (F1) and (F3) may be solved

as linear first-order differential equations in V_.I _ and VJ,

respectively, giving (omitting the subscript 1 on r)

' - Lfl.kdr " /

(F4)

and

where

+ _- _ i'__

_(r) :;i AeClTJf -1 { (Ae)2--[A,(r,_)]_ _

and subscript m may here refer to any radius between hub

and tip.

r _ dr _'_ e(Z) _(_) dr+V_'""_: (F5)

For the limiting case of zero aspect ratio, the last term in

equation (F1) approaches zero so that V_._----V_.I,_ , whereas

V_._ is obtained by integrating equation (F3) with the third

term neglected.



28 REPORT 955--NATIONAL ADVISORY

Vz 2 Tr 2 i V 2 Vz,2.m2)+2Jir _(d _22) dr _,2 _ V z,2,a -- \ Z,2,S,m --

When equation (F4) is integrated by parts and Ae(rl) is

replaced by y. g(r) as in equation (35), there is obtained

• _. 2 •

2 2 2V,,,I2= V,,,.,,-r.e (V,,,.,,,- V..,....)-

.it2 "It"2

e Jr. V"1"2 dr e dr

in which

_l(r) _ ff mg(r)dr

If it is desired to compare the general case with other cases on

the basis of the same Vz,_,m, then V.,_,._=Vz,1 .... • By the use

of the mean-value theorem of integral calculus, the preceding

equation can be written as

_- 2 _r 2

Vz,, 2- Vz,,,. = --e V.,,,,-''-'_Le - 12

--Iv (-_)2"_'(')1] (F7,
Vz,1 ,s 2

COMMITTEE FOR AERONAUTICS

where V_. _.2 is a mean value of V_. _.3 between r and r_. the

mean depending on the choice of the function g(r). If the ap-

proximation is made in letting I_. 2.,_ = V_. 2..... equation (F5)

may be written as

Tz 2 V 3_ (Z, _.2 -- _.2., "-V,.2., 2 e- ) _'¢'(r)--I -t-y._s(r)--y_4(r)
(F8)

where

1

_2(r) "_y_ = _1 (r) -I-_ y, {[g(r) ]2--[g(rm) ]2}

and

. , {'r e(L),¢(,)2g(r) d 2
_s(r)----e-(Z) _(r)jr _ i'2 dr

m r3

_,(r)=e_(;)2¢(r) r r e(L)'_(r ) 3[g(r)] 2 dr4 dr _22 dr
.,] r m

The change in the distributions of V.._ and V_.2 with the

maximum displacement y_ for a given g(r) is now determined

by differentiating equations (F7) and (F8), assuming that

r., V_.I._ _, and V_.2., 2 are independent of y_

(_)' y._.(r).(;).2 _ log_w_.l-_-V_.._.1 ,_l(r)e
(F9)

'w 2

2_d log, v..2--.... ,,.2.,V,ff _. )-Le _ _ttr)-l-Y, tig_r)J --[g(.r.oj t)-I-_zff-f-_.2 _'-- Y_._ff

By subtracting equation (F10) from (F9) and neglecting three small terms containing y./V, 2

7r 2 _r 2

d V._ l(_)_(r)(_ (Z)_..,(r)±V..2 2 e-(_)_,(r ){l+y [g(r)]__[g(rm)]2_ l_(r)
dy, log, _.'_=_ k Vz.,2 _ }] 2 V,.2 _

The equation of continuity, equation (22), may be written

as

E,+,. rg(r)] (F12)

by replacing r_ with r_+y_ g(r). It is here assumed that the

displacement A¢ for the continuity equation has the same

form as, but may differ in magnitude from, A_. If the

variation of pJp_(r) with y_ is neglected, that is, the density

distribution is assumed to be determined primarily by the

y_ d_4(r) (F10)
V_,_ 2 dy,

(Fll)

tangential velocity distribution, differentiation with respect

to y_ for a given g(r) gives

g (r) d

d V_ _ r dr g (r)

dy--_log, _._ . -- g(r) ÷ d (F13)
' _-l-y_ _- l+y_-_-_ g(r)

If the same distribution of I'_,l and V_,_ satisfies both the

continuity and equilibrium equations, y¢ is a function of y_

determined by the differential equation, which is obtained

by dividing equation (Fll) by equation (F13):

dy__l (_L) _ _l(r)

dy, 2 g(r) d
r dr [g (r) ]

g(r) } d (r
l+y_- 1-t-y_[g.)]

_(r) ]o _ 2

(F14)
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In order to evaluate equation (F14), the form of g(r),

which is implicit in the equations used, must be found. An

order-of=magnitude result may be obtained, however, by

equating the right side of equation (F14) to a constant --K s

and determining the value of the constant from the boundary

conditions on g(r). Because this assumption involves set-

ting dyJdye equal to a constant, it is equivalent to the

assumption already stated that for the selected _e----y_ g(r),

the corresponding _ differs only in amplitude. In order to

obtain the order-of-magnitude result, the right side of equa-

tion (F14) is simplified by

(a) Setting the first two terms in the bracket equal to 2

(b) Considering the terms involving y_ and ye negligible

when they are compared with unity

(c) Ignoring the last term in the bracket because it

contains V_.2 _ in the denominator (If equa-

tion (F14) is written in terms of r/rt instead of r,

the term becomes \ L ]' which is about

250 for A=2 and L=0.6.)
rt

As a result of this simplification, equation (F14) becomes

7P 2

r t-_ g_r)

Rewriting equation (F15) gives

="_- -v _ gir) (F16)

When equation (F16) is differentiated with respect to r and
d

the relation _. _1 (r) =g(r) is used,

d 2 1 d lr 2 1
c_g(r)+r_g(r)+[(_)--_ g(r) =0

This equation gives g(r) as a Bessel function of the tirs_

order and argument (_r/LK). The value of (_r/ZK), and

thus of K, is determined by the boundary conditions g(rh)-_

g(r_)=O. In order that g(r) have a single maximum, the
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first eigenvalue of this boundary-value problem must be

taken. A satisfactory approximation to this solution may

be obtained without involving Bessel functions by replacing

g(r)/r in equation (F16) by g(r)/r,_, differentiating, and
solving:

g(r) =e 2_ (K1 cos lr+K2 sin lr)

where

l---- Z K "_ (2rm) 2

The boundary conditions are determined by using the first

eigenvalue for K,

and therefore,

g(r)=Kae :r= sin r--rh _ (F17)
rt--ra

'_2 1 _z . 1 _r_
L) _= _-t-4-r_,,: "_ -(rtZ-rh) 2

(This approximate equality is correct within 1 percent for

(rh/rJ_0.5.) Substituting this result in equation (F15)

gives

dY_----K2----[%--rh_2-- A 2 (F18)
dye-- -- \_)----

In this very _ough approximation, dyJdy_ is therefore equal

to minus the square of the aspect ratio. By integrating

equation (F18) and by letting y¢., equal the value of y¢

corresponding to ye----0 (simplified-radial-equilibrium approxo

imation), i

__ 2 (F19)y_--y_._--A y_

A solution corresponds to Y_=ye=y, which when substituted

into equation (F18) gives i

or

A Ac s

=1_-_ (37)



APPENDIX G

EQUATIONS FOR FINITE-ASPECT-RATIO CALCULATION

In the numerical example of the symmetrical-velocity-

diagram and constant-total-enthalpy compressor, computa-
tion is made for a blade-row aspect ratio of 2, with a pre-
scribed simple sinusodial radial-flow path. Inasmuch as
the term containing radial variation of entropy is not con-

sidered, substituting equation (E5) into (14c) gives

dr1 F trl--r2) v j=-- 1._ \r_.,_--_] (G1)

and

dV.l 7' ' , U ' r, ( .,_ ±_'_ dr, (Gin
(._) (r,--r,) V.., =-- ,.t r2-_\r_. ,-- t] dr2dr2

From the relation

rl--r2 I/ A _'(r_i r_2_

L' --r-tl__rh _ h r, r,l

\ rt/

and integrating equations (GI) and (G2) from rh to r, there

results

_) =e

rl

_i--vr., F i"vS1
\'-_./J._ fly.,.v r". '_rt --' _ __Lt u,) .,.

I'f

(G3)

and
r2

i-'\'¢.;(._._._q,(_]r-
/Tr -,. I_ ,,) i v, r,/ \r,/I r_

a_,__ /IV',.,.,.Y f"e
tW) =' " Lt u, )- .,.

rt

r2

_i,,a'_ _ cr,('-,-_'l,(_'l
i"h

t'-_) J_ V, ',I v, ilri_.;rt_x_.r, _ ( (G4)

With this set of equations replacing (E7) and (E8), the
rest of the calculation is the same as in the zero-aspect-
ratio case. Equation (37) is used as starting value and by

appropriate interpolation after two cycles of calculation the
third or fourth cycle usually gives sufficient accuracy.
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